The interest of the Mitric Group is to develop an efficient mixed quantum-classical methodology for the simulation of light-induced nonadiabatic processes in multichromophoric light-harvesting assemblies and to apply it to explore energy and charge transport dynamics in novel classes of light-harvesting systems. There is growing evidence that nonadiabatic relaxation processes play a fundamental role in determining the efficiency of the excitonic transfer or charge injection. In addition to the intramolecular nonradiative transitions through conical intersections, well known from photochemistry, the coupling between the chromophores in multichromophoric assemblies gives rise to novel intermolecular nonadiabatic relaxation channels through funnels between the delocalized excitonic and/or charge transfer states. In order to simulate coupled electron-nuclear dynamics in multichromophoric nanostructures, we develop and implement light-induced surface hopping methods and combine them with efficient electronic structure methods.